
All enquiries online@scc.com
Contact our team 0121 766 7000
Visit scc.com

Transitioning from
Oracle JDK to Azul
Zulu Builds of
OpenJDK

https://www.scc.com

All enquiries online@scc.com
Contact our team 0121 766 7000
Visit scc.com

Organizations who are interested in exploring trusted
alternatives to Oracle Java SE need reliable information
on how to migrate their applications from the Oracle JDK
distribution of OpenJDk to other distributions like Azul Zulu
Builds of OpenJDK, which offer equivalent
or better expert engineering support.

Azul Zulu Builds are often described as drop-in replacements
for the Oracle JDK — both Oracle JDK and the Azul Zulu Builds
are derived from the OpenJDK repository. Core functionality
like the JVM, libraries, etc. are completely interchangeable. No
modifications to source code are required to swap one for the
other nor is a recompilation of application code necessary.

In addition, each Azul Zulu binary passes all the tests of the
Technology Compatibility Kit (TCK) provided as part of the
relevant Java Specification Request (JSR). There are over
150,000 tests that ensure a binary conforms to the defined
specification and provides a high level of confidence of
functional equivalence between tested JDKs.

Azul suggests a 3-phase approach to transitioning
applications to Azul Platform Core:

1.	Planning
2.	Implementation
3.	Testing

Identify machines/instances needing to transition and the
major JDK versions in use.

You can use an inventory report from a SAM (Software Asset
Management) tool as a starting point. If you do not have a
SAM, please see the Appendix regarding how to determine
which JDK is installed on different operating systems.

Align on a current JDK migration and update strategy with
application managers. It can be helpful to classify different JDK
environments according to urgency and complexity as well as
based on existing release planning and policies.

Decide upon a centralized or decentralized approach. You may
also decide to combine a migration with a transition to more
recent versions of Java in a two-step process. Or you may
decide to require use of only certain versions of the JDK, or to
require use of stabilized builds only.

Find out more information about Azul’s stabilized builds, or
Critical Patch Updates:

https://www.azul.com/wp-content/uploads/tb-security-
onlyupdates.pdf.

Azul has put together this guide based on
migrating customers from the Oracle JDK to Azul
Zulu Builds of Open JDK. While the time required to
migrate depends on many factors,
including whether applications are using
discontinued technologies like Applets or
Webstart, Azul can boast a 100% success rate.

•	 One of our banking customers converted 2500
applications over a weekend.

•	 One of the largest entertainment companies in the
world transitioned thousands of applications within a
couple of months.

1. Planning

https://www.scc.com
https://www.azul.com/wp-content/uploads/tb-security-onlyupdates.pdf
https://www.azul.com/wp-content/uploads/tb-security-onlyupdates.pdf

All enquiries online@scc.com
Contact our team 0121 766 7000
Visit scc.com

2. Implementation

Quick and swift migration strategy

All Azul JDKs and Oracle JDKs are built from the same source
code from the OpenJDK Project. Core functionality like the
JVM (Java Virtual Machine), libraries, etc. are completely
interchangeable. No modifications to source code are required
to swap one for the other nor is a recompilation of application
code necessary. Migration experts, who are certified in the
Azul migration methodology, can manage your migration for
you.

Zip file Use a utility or tool to unzip the archive dependent
on which operating system is being used. This is a manual
installation method so the Azul JDK can be installed in a
directory of your choosing.

Compressed tar file (.tar.gz). Use the UNIX command tar
-xvf <zulu-package>.tar.gz. This is also a manual installation
method so any directory can be chosen.

Windows MSI file. From the Windows command
line, run msiexec /i <zulu-package>.msi /qn. This will install
Zulu into the C:\Program Files\Zulu\<zu-lu-jdk>\ directory.

Linux RPM file: Install from a command prompt using the
command:

•	 On Red Hat Enterprise Linux: yum install <zulu-package>.
rpm

•	 On SUSE Linux Enterprise Server: zipper install <zulu-
package>.rpm Linux DEB file:

On Ubuntu or Debian use the command: apt install <zulu-
package.deb>.

Install the Azul Zulu JDK

The installation process depends on which format of
distribution is being used.

MacOS DMG file. This can be installed graphically from the
desktop or the command line using the command: hdiutil
mount <zulu_package>.dmg
Full instructions for installation can be found in the Azul
documentation at https://docs.azul.com/zulu/zuludocs/
ZuluUserGuide/Title.htm.

See Appendix for details of using repositories.

Additional Fonts - Oracle JDK prior to JDK 11 included
additional Lucida fonts. To provide compatibility with the
Oracle JDK, Azul provides the Azul Commercial Compatibility
Kit (CCK). For desktop machines, the CCK should be installed
if graphical applications are being used. Details of the
available CCK files and installation instructions can be found
at https://www.azul.com/products/components/commercial-
compatibility-kit/.

Desktop Transition – if you use desktop applications with
Browser Plug-ins (Applet) and Java Web Start functionality,
please see the section Desktop Machine Transition at the
end of this document. These are not included in the Azul Zulu
OpenJDK binary distributions.

Application Configuration - Having installed the Azul Zulu JDK
on a machine, it may be necessary to reconfigure applications
to use the new JDK.

Each application will vary in how it determines where the
Java executable is located.

Here are some common scenarios.

1.	The PATH environment variable.
This is set differently depending on which operating
system is being used. The PATH environment variable
should be modified to include the bin directory of the
Azul Zulu JDK installation as the first place where an
executable called java is located.

2.	The JAVA_HOME environment variable.
Similar to PATH, this is also set differently depending
on the operating system in use. JAVA_HOME indicates
where the JDK is installed and should be set accordingly
for the Azul Zulu JDK. Note that it is the installation
directory so, unlike changing PATH, should not reference
the bin sub-directory. JAVA_HOME is used by some
applications (e.g. some application servers) but is not
used universally by all applications.

3.	The Tomcat server.
The default configuration file should be modified to
reflect the location of the Azul Zulu JDK installation.

https://www.scc.com
https://docs.azul.com/core/
https://docs.azul.com/core/
https://www.azul.com
https://www.azul.com

All enquiries online@scc.com
Contact our team 0121 766 7000
Visit scc.com

3. Testing

Appendix

Functionally, there are no differences between the Oracle
JDK and Azul Zulu OpenJDK (other than those already noted
for desktop machines). This means that there will be no
differences executing your Java application using either JDK.

However, it is recommended to run your standard tests for
applications being used to ensure that none of the changes
between JDK updates has affected application behavior. This
is a good practice even for exact like for like version releases.

How to determine what JDK version is deployed on
various Operating Systems:

Ubuntu/Debian Linux
Assuming that the JDK has been installed using the
package manager, installed versions can be listed
using the command:

$ dpkg -l | egrep [jJ][rR][eE]\|[jJ][dD][kK]
This will produce output similar to this example from
a machine running Ubuntu

In conclusion, Azul Zulu Builds of OpenJDK are a direct
replacement for the Oracle JDK (with the exception of
the discontinued desktop features such as Applets
and Web Start).

Once Java versions are identified, transition consists
of installation of the latest versions of the Azul Zulu
JDK and minor changes to application configuration to
reflect the new location of the JDK.

ii default-jre-headless
2:1.11-68ubuntu1~18.04.1 amd64 Standard Java or Java
compatible Runtime (headless)
ii jdk1.8 1.8.0202-1 amd64 Java Platform Standard
Edition Development Kit ii openjdk-11-jre-headless:
amd64 11.0.7 +10-2ubun-tu2~18.04 amd64

OpenJDK Java runtime, using Hotspot JIT (headless)
ii zulu-8 8.48.0.51-1 amd64 Azul
Systems Zulu JDK 8.48.0.51 (8u262-b19)

This shows four Java runtimes are installed:

1.	Default Ubuntu 18.04 Java Runtime Environment
(JRE)

2.	Oracle JDK 8 update 202 (Although Oracle is not stated
explicitly, it is implied by the use of the Java(TM) trademark).

3.	OpenJDK 11 update 7 from the Ubuntu Linux
distribution

4.	Azul Zulu OpenJDK 8 update 262. An alternative approach is
to search the whole filesystem, which will also find any JDKs
that have been installed manually (such as by unpacking a
zip file). Use this command to search for files named java
that are executable.

find / -perm u+x -type f -name java

NOTE: To enable a full scan of the file system, this should be
run as the root user.

The paths listed will often indicate the exact version of the
JDK. If, however, for example, the directory is /opt/jdk8, the
exact version installed will need to be determined by running
the java command:

$ /opt/jdk8/bin/java -version

This will produce output similar to this:

java version “1.8.0_202” Java(TM) SE Runtime Environment
(build 1.8.0_202- b08) Java HotSpot(TM) 64-Bit Server VM
(build 25.202-b08, mixed mode)

Again, this is the Oracle JDK 8 update 202. Oracle/Red Hat
Enterprise Linux/SUSE Linux Enterprise Server Use the
command (as root) # rpm -qa --queryformat “%{NAME}
%{VERSION} %{VENDOR} \n” | egrep [jJ][rR][eE]\|[jJ][dD][kK]

This will produce output something like:

jdk1.8 1.8.0_202 Oracle Corporation

Alternatively, the same full file system search method can be
used as described for Ubuntu/Debian.

https://www.scc.com

All enquiries online@scc.com
Contact our team 0121 766 7000
Visit scc.com

Windows
From a command prompt run the command wmic,
which starts an interactive shell.

Type the command: product get name
In this output, you will see something like this
Java 8 Update 202 (64-bit)
Java SE Development Kit 8 Update 202 (64-bit)

MacOS X
To list JDKs installed using the packaging system,
use the command:
$ pkgutil --pkgs | egrep jre\|jdk

This will produce output like this
com.oracle.jre com.oracle.jdk-14.0.2 com.oracle.
jdk8u202

The com.oracle.jre package does not provide a
version number. This can be obtained using the
command:
$ pkgutil –pkg-info com.oracle.jre

Which will produce output like this, showing it is Java
SE 10.0.2
package-id: com.oracle.jre
version: 10.0.2.0.13 volume: /
location: Library/Internet Plug-Ins/
JavaAppletPlugin.plugin install-time: 1538383780

MacOS is a UNIX-based operating system, so the full
file system search method described for Ubuntu/
Debian Linux can also be used.

Solaris
To list JDKs installed using the packaging system, use these
two commands:

$ pkg list | egrep [jJ][rR][eE]\|[jJ][dD][kK]
$ pkginfo | egrep [jJ][rR][eE]\|[jJ][dD][kK]

This will produce output like this:

runtime/java/jre-8
1.8.0.181.12 and

system SUNWj8cfg
JDK 8.0 Host Config(1.8.0_202)

system SUNWj8dev
JDK 8.0 Dev. Tools (1.8.0_202)

system SUNWj8jmp
JDK 8.0 Man Pages: Japan (1.8.0_202)

system SUNWj8man
JDK 8.0 Man Pages (1.8.0_202)

system SUNWj8rt
JDK 8.0 64-bit Runtime Env. (1.8.0_202)

Solaris is a UNIX-based operating system, so the full _le
system search method described for Ubuntu/ Debian Linux
can also be used.

Desktop Machine Transition
Prior to the release of JDK 11, Oracle JDK contained a number of
commercial features that are not part of the OpenJDK source
code. Two of these specically apply to the deployment of
applications on desktop systems.

1. The Browser Plugin: This is used to enable Applets
to be used through a web browser. There is no open
source alternative to this, and the Azul Zulu JDK does
not include equivalent functionality. Most browser
providers no longer support plugins, and Oracle ended
support for the Browser Plugin in March 2019 (even for
those with a commercial support contract). In these situations,
the option is to continue using your existing JDK
and accept the potential security risks of not being able
to address known vulnerabilities.

2. Java Web Start: This deployment technology provides for
applications to automatically update themselves when the
user runs them. Although the Java Network Launch Protocol
(JNLP), which is part of Web Start, has a JSR, no reference
implementation was provided for this. Azul can provide builds
of IcedTea-Web, which is an open-source alternative to
Java Web Start. This is not a drop-in replacement, so some
additional transition effort is needed – Azul has worked
with other customers on this topic. IcedTeaWeb transition
is beyond the scope of this document. Download at https://
www.azul.com/ products/components/icedtea-web/

https://www.scc.com
https://www.azul.com/products/components/icedtea-web/
https://www.azul.com/products/components/icedtea-web/

All enquiries online@scc.com
Contact our team 0121 766 7000
Visit scc.com

https://www.scc.com

